From 1 - 10 / 77
  • Categories    

    Dataset contains location of glacial shafts (moulins) on two polythermal glaciers: Werenskioldbreen and Hansbreen. Fieldwork has been done with GPS device at the end of ablation season in 2015. Acknowledgements: Research Council of Norway, Arctic Field Grant 2013: Spatial distribution of snow cover and drainage systems on the glaciers on Wedel Jarlsberg Land (RiS ID: 6158); the National Science Centre PRELUDIUM 4: Role of meltwater from snow cover for supplying drainage systems of the Spitsbergen glaciers (2012/07/N/ST10/03784)

  • Categories    

    The internal structure of glaciers evolves primarily due to their thermal state, which is influenced by ongoing climate change. Radio-echo sounding is a technique that indirectly identifies water-saturated temperate ice (W-STI) and water-free ice (W-FI) within glaciers. A novel automatic image processing method based on local binarization has been developed to improve the accuracy and efficiency of identifying these layers. Applied to the Arctic glacier Hansbreen from 2007 to 2021, this technique revealed that the glacier’s internal structure evolved from a two-layer system to a nearly homogeneous structure composed mainly of temperate ice (Kachniarz et al. 2025). The dataset contains raw GPR data from 2007 - 2021 taken in the Hansbreen ablation zone used to identify the glacier's internal structure. The profiles are divided into two sections: upper and lower areas. The upper area includes GPR profiles intended to replicate the 2003 GPR profile. The lower area consists of profiles shifted down the glacier, corresponding to the glacier’s movement since 2003. The profile lengths range from 0.7 km to 1.7 km, with the 2016 lower and 2021 upper areas, respectively. In the first season (2007), the GPR profiles were situated at altitudes between 188 and 216 meters above sea level, running transversely to the glacier’s movement. The glacier’s internal structure was examined using GPR system with unshielded 25 MHz, Rough Terrain Antenna (RTA) 30 MHz, and RTA 50 MHz antennas. Image processing Python script based on local binarization and processed image examples have been included in the dataset. See details in Kachniarz et al. 2025. The field data collection and/or processing received grant aid from: Svalbard Integrated Arctic Earth Observing System (SIOS) (SnowInOpt: SIOS Infrastructure Optimisation of the Cal/Val process for the snow research), European Commission Horizon Europe HORIZON-CL5-2024-D1-01-02 (LIQUIDICE: LinkIng and QUantifying the Impacts of climate change on inlanD ICE, snow cover, and permafrost on water resources and society in vulnerable regions) 101184962, the National Centre for Research and Development within the Polish-Norwegian Research Cooperation Programme (AWAKE2 project Pol Nor/198675/17/2013), Polish-Norwegian funding (AWAKE project PNRF-22-AI-1/07), Polish Ministry of Science and Higher Education (GLACIODYN No. IPY/269/2006), PolishNational Centre for Research and Development (SvalGlac project No. NCBiR/PolarCLIMATE-2009/2-2/2010), European Union 7th Framework Programme (ice2sea programme, grant no. 226375. Glaciological data were processed under assessment of the University of Silesia data repository within project Integrated Arctic Observing System (INTAROS, European Union’s Horizon 2020 Research and Innovation Programme—grant No. 727890). The work was supported by the Centre for Polar Studies (the Leading National Research Centre in Earth Sciences for 2014–2018) funding, No. 03/KNOW2/2014. Reference: Kachniarz K., Grabiec M., Wróbel K., Ignatiuk D. 2025: Glacier internal structure revealed by automatic image processing-powered classification of radar images. Applied Geomatics (in review)

  • Categories    

    1. Two high-quality UAV movies taken in Hornsund fiord on 15th Sep 2016 with Phantom 3 Advanced usage. The movies are focused on Horyzont II ship during unloading goods to the Polish Polar Station Hornsund. Format file: .MOV. 2. Dataset consist six UAV movies taken in neighborhood of stake no. 4 of Hansbreen, one taken in the vicinty of stake no. 6 of Hansbreen and two on Tuvbreen. The movies from stake no. 4 show the ablation zone, crevasses, glaciers in the area and a team of University of Silesia scientists during maintanance of automatic weather station (AWS). The movie from stake no. 6 presents the surface of Hansbreen towards accumulation zone. The movies from Tuvbreen show the area around, surface of the glacier and University of Silesia team. UAV: Phantom 3 Advanced. Format file: .MOV. 3. One high-quality UAV movie taken from West morain of Paierbreen 22nd Aug 2016 with Phantom 3 Advanced usage. The movie is focused on the front of Paierlbreen. Format file: .MOV. 4. Two high-quality UAV movies taken on Silesiabreen 23nd Aug 2016 with Phantom 3 Advanced usage. The movie is focused on the snowline of Silesiabreen, University of Silesia scietists while fieldwork and neighbourhood. 5. UAV movie of Storbreen upper ablation area in 21st Aug 2016. 6. Three high-quality UAV movies taken from vicinity of Treskelen in Hornsund on 12 Sep 2016 with Phantom 3 Advanced usage. The movies are focused on the University of Silesia team during automatic weather station maintanance, sailing boat operated by scientists and Hornsund fiord. 7. A high-quality UAV movie taken from vicinity of Brateggbreen on 5 Sep 2016 with Phantom 3 Advanced usage. The movie is focused on Brateggbreen front and its proglacial lake. Format file: .MOV. 8. UAV movies of Werenskoildbreen front and morain in summer 2016

  • Categories    

    Glaciers facies extents of Langjökull delivered from unsupervised classifications of fully-polarimetric SAR data (ALOS-2 PALSAR, RADARSAT-2) for 2018 year. Date of SAR images acquisitions: 12, 16 Mar 2018 (Fine Quad Pol RADARSAT-2), 17 Mar 2018 (High Sensitive Quad Pol ALOS-2 PALSAR). Method of classification: H-a Wishart Classification. Results validated with terrestrial measurements (shallow ice cores drilling, Ground Penetrating Radar measurements). Research done with cooperation with University of Iceland and supported by the European Space Agency, Third Party Miassions. Overwiew of results of RADATSAT-2 (16 Mar 2018; Fine Quad Pol) classification of south part of Langjökull. Black line - contour of Langjökull; other colours - different scattering properties of SAR microwaves. For more details please contact Barbara Barzycka (bbarzycka@us.edu.pl).

  • Categories    

    Glaciers facies (ice, superimposed ice, firn) extents of Hansbreen, Storbreen and Flatbreen delivered from unsupervised classifications of single, dual and fully-polarimetric SAR data (ALOS-2 PALSAR, RADARSAT-2, Sentinel-1, ERS-2 SAR) between 2008 and 2018. Methods of classification: unsupervised ISO classification, H-a Wishart Classification. Results validated with terrestrial measurements (shallow ice cores drilling, Ground Penetrating Radar measurements). Research supported by the European Space Agency, Third Party Missions grant and Svalbard Science Forum, Arctic Field Grant 2018. For more details, please e-mail to bbarzycka@us.edu.pl.

  • Categories    

    Point cloud collected using the Riegl VZ®-6000 long-range terrestrial laser scanner. The TLS survey was carried out on 15th August 2021. The dataset is the result of relative and absolute registration of four point clouds. The dataset is the supplement to the paper: Błaszczyk, M.; Laska, M.; Sivertsen, A.; Jawak, S.D. Combined Use of Aerial Photogrammetry and Terrestrial Laser Scanning for Detecting Geomorphological Changes in Hornsund, Svalbard. Remote Sens. 2022, 14, 601. https://doi.org/10.3390/rs14030601

  • Categories    

    Englacial water pressure was recorded by placing HOBO 250-Foot Depth Water Level Data Loggers in the center of Crystal Cave (N77°02' E15°34', 174 m) channel system (Hansbreen glacier). Data loggers were set to record values every 30 minutes, resampled to daily in post-processing, and have a resolution of 2.55 kPa for a typical error of 3.8 cm water level. Water pressure was converted in water level. Sensor was placed in the cave by drilling anchor points into the ice above a vertical shaft, then hanging cables down in the center of conduit. Stabilization cables were used to keep sensors from attaching to and freezing into ice walls by manually rappelling down to the sensor and attaching it to three horizontal cables, anchored into the ice walls at about 120 degrees apart. Senor was installed in Crystal Cave at about 100 m total distance from the cave entrance, in ice about 74 m thick. The sensor was installed 28 m above the glacier bed and 46 m below the ice surface.

  • Categories    

    Time-lapse cameras In order to determine the state of coverage of the area, e.g. period of snow cover on a tundra, the extent of the glacier front, etc., it is necessary to perform photographic imaging at a specific time interval. This will allow for precise diagnosis of snow conditions. The camera is installed at the main entrance to the NCU Polar Station. The lens is pointed in a westerly direction, towards Prins Karls Forland CRIOS – Cryosphere Integrated Observation Network on Svalbard Project financed from the EEA Financial Mechanism 2014-2021 operated by the National Science Centre in Poland Agreement no. UMO-2022/43/7/ST10/00001 to a predefined project no. 2022/43/7/ST10/00001 Project period: 08.09.2022 - 30.04.2024 (2029)

  • Categories    

    Hansbreen velocity is measured with a Global Navigation Satellite Systems (GNSS) receiver that sampled location every 3 hours at stake 4MONIT located approximately 3.5 km upstream of the glacier terminus (N77°02’ E15°28’). Monitoring of the glacier is conducted by Institute of Geophysics Polish Academy of Science. We calculate the daily speed based on each midnight positions (with a horizontal accuracy of ±4 cm).

  • Categories    

    Dataset contains results of GPR survey performed with 800 MHz antennas for snow depth calculation. Fieldwork has been done during peak of accumulation, along repeated profiles on several glaciers in the region of Hornsund, Svalbard: Amundsenisen (2013) Werenskioldbreen (2013, 2014, 2015) Nannbreen (2013) Ariebreen (2014) Flatbreen (2018) Storbreen (2018) Acknowledgements: Research Council of Norway, Arctic Field Grant 2013: Spatial distribution of snow cover and drainage systems on the glaciers on Wedel Jarlsberg Land (RiS ID: 6158); the National Science Centre PRELUDIUM 4: Role of meltwater from snow cover for supplying drainage systems of the Spitsbergen glaciers (2012/07/N/ST10/03784); References: LASKA M.,GRABIEC M.,IGNATIUK D.,BUDZIK T.,2017. Snow deposition patterns on southern Spitsbergen glaciers, Svalbard, in relation to recent meteorological conditions and local topography. Geografiska Annaler, Series A: Physical Geography, 99(3): 262–287. doi:10.1080/04353676.2017.1327321